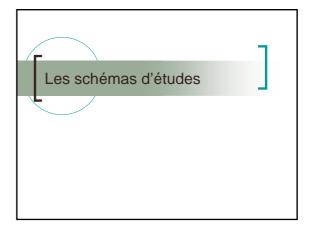


Définition épidémiologie

- Étude de la distribution et des déterminants des problèmes de santé (maladies et autres états concernant la santé) dans les populations humaines
- Et application de cette étude à la prévention des problèmes de santé

Éléments de la définition


- Étude : discipline scientifique
- Populations : groupes et non individus, discipline statistique par nature
- Définition d'une population
 - o Géographique : secteur du médecin du travail
 - Activité : service hospitalier, établissement industriel, branche (métallurgie...)

Les 3 types d'épidémiologie

- Épidémiologie descriptive
 - Décrire l'état de santé des individus dans une communauté
 - Nombre de cas, calcul de proportions, de taux...
- Épidémiologie analytique
 - Comparer les taux avec des outils statistiques (tests)
 - Recherche d'une association

 - Calculer des risques
 Notion de force de l'association
- Épidémiologie d'évaluation
 - Évaluer l'efficacité des mesures de prévention (vaccins, campagne d'informations, ...)

JDV épidémiologie

Les schémas d'études

- o Enquêtes de cohorte
- o Enquêtes cas témoins
- o Enquêtes transversales
- Enquêtes expérimentales
- Notion de robustesse des études

Expérimentale > cohorte > cas-témoins > tranversales > série de cas

Enquêtes de cohorte

- Portent sur une population d'individus dont certains sont exposés au facteur étudié et d'autres non, tous suivis au cours du temps pour voir s'ils développent la maladie
- Objectif
 - Calcul de l'incidence et de la prévalence de la maladie dans la cohorte
- Enquêtes
- prospectives++

 Sélection des groupes exposés et non exposés au début d'enquête et suivi au cours du temps rétrospectives (plutôt les cohortes historiques)

 - L'exposition au facteur et la survenue de la maladie sont antérieurs au début de l'enquête

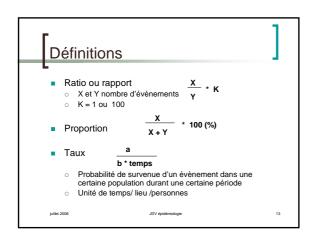
Enquêtes cas témoins

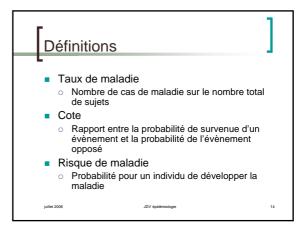
- Enquêtes rétrospectives
 - o Commencent après le diagnostic de la maladie
 - Comparent des malades (cas) et des non malades (témoins) pour des expositions ayant eu lieu avant l'apparition de la maladie
 - évaluation des expositions à postériori
- On ne peut pas calculer la fréquence de la maladie

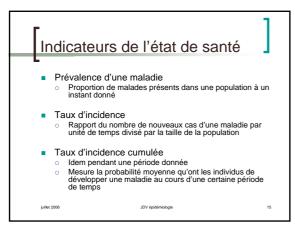
Enquêtes transversales

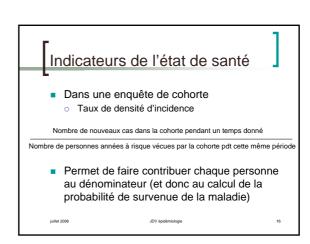
- Portent sur une population définie dans laquelle on recueille les informations une seule fois pour chaque individu
- L'exposition et la maladie sont mesurées en même temps
 - Concerne les expositions passées (reconstitution du calendrier professionnel)
- Étudie la prévalence d'un maladie et non l'incidence
- Possibilité d'enquête répétée (avec population unique ou renouvelée)

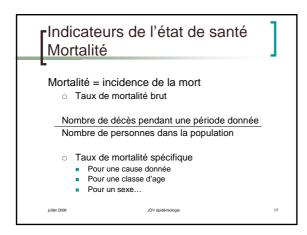
Études expérimentales

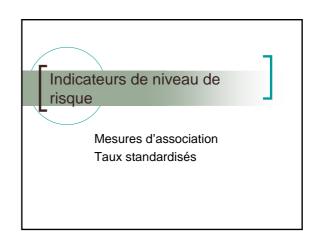

- Choix de l'affectation des sujets au groupe exposé ou non exposé
- Suivi des sujets au cours du temps pour comparer le taux d'apparition de la maladie entre les 2 groupes
- Contraintes
 - o Faisabilité
 - Éthique
- Permet de rechercher une relation causale entre l'exposition et la maladie


juillet 2006


JDV épidémiologie


Les indicateurs en épidémiologie


Définitions Indicateurs de l'état de santé Indicateurs de niveau de risque Indicateurs d'exposition



Mesures d'association Première étape du calcul du risque

- Enquête de cohorte
 - Calcul de taux de maladie chez les exposés et les non exposés
- Enquête cas témoins
 - Calcul des cotes d'exposition chez les malades et les non malades

juillet 2006

JDV épidémiologi

Mesures d'association

<u>2ème</u> étape du calcul du risque

- Comparer les taux ou cotes
 - Mesurer la différence entre les deux groupes quant à la fréquence de la maladie (cohorte) ou du facteur de risque (cas-témoins)
- Calcul du risque relatif = cohorte
- Calcul du rapport de cotes ou odds ratio = enquêtes cas-témoins

llet 2006 JDV épidémiologie

Tableau de contingence Enquête de cohorte

	Malade	Non malade	
Exposé	а	b	L1
Non exposé	С	d	L0
RR = (a/L1) / (c/L0)		Total

Mesures d'association Risque relatif

- Rapport du taux de maladie dans le groupe exposé sur le taux de maladie dans groupe non exposé
- RR = (a/L1) / (c/L0)
- Mesure relative de taux, ne s'exprime pas dans une unité particulière

iuillet 2006 JDV épidémiologie 22

Tableau de contingence enquête cas témoins

	Malade	Non malade		
Exposé	а	b		
Non exposé	С	d		
	C1	C0	Total	
OR = ad/bc				
juillet 2006	JD	V épidémiologie		

Interprétation des mesures d'association (RR et OR)

- RR = 1 : pas d'association
- RR > 1
 - Association positive
 - Il y a RR fois plus de malades lors d'une exposition que sans
- RR < 1</p>
 - Association négative
 - o Facteur protecteur

juillet 2006 JDV épidémiologie 24

Indicateurs de niveau de risque : taux standardisés

- Pour la comparaison de taux (mortalité morbidité...) en neutralisant un facteur de confusion
- Ex : comparaison de mortalité par cancer du poumon dans 2 populations d'hommes
 - Age = facteur de confusion
 - D'où comparaison des taux par tranches d'age
- Comparaison des taux bruts impossible si la distribution des populations est différente dans les différentes classes d'age

Indicateurs de niveau de risques: taux standardisés

- Principe
 - Correction du déséquilibre entre les populations à comparer en utilisant les taux spécifiques d'une population de référence
- Exemple de population de référence
 - une des populations à comparer population extérieure
- Calcul pour chaque strate $_{\rm i}$ du nombre d'évènements attendus ${\rm a_i}$
 - a_i = effectif de la strate $_i$ * taux spécifique de la strate $_i$ dans la population de référence

Indicateurs de niveau de risques : taux standardisés

- Standardized Mortality Ratio (SMR) Nombre de décès observés Σ des o_i Nombre de décès attendus Σ des a
- Standardized Incidence Ratio (SIR) Nombre d'évènements observés Nombre d'évènements attendus

Indicateurs de niveau de risques : taux standardisés

 Interprétation similaire au RR mais pour la comparaison de chaque population à la population de référence

Les indicateurs d'exposition

- Durée (années...)
- Intensité, niveau (pics d'expositions? Importances des expositions? Notion de métrologie?)
- Fréquence
- Période (il y a 10 ans? 20 ans? Latence pour les cancers)
- Notion d'indice d'exposition cumulée
 - fonction du niveau d'exposition et de la fréquence
 - Ex fibres cc/année
- Aide des matrices emploi exposition
 - évalutil pour les fibres minérales artificielles et l'amiante

juillet 2006

JDV épidémiologie

Interprétation des résultats

Notion de signification statistique : risques α et β Jugement de signification statistique / de causalité Biais

Les risques α et β

- H₀ hypothèse nulle
 - il n'y a pas de différence significative entre les 2 variables, 2 moyennes, 2 proportions...
- H₁ hypothèse alternative
 - o il y a une différence
- α : probabilité de rejeter H₀ alors qu'elle est vrale : risque maîtrisé
- β : probabilité de ne pas rejeter H₀ alors que
 - H₁ est vraie et H₀ est fausse

Les risques α et β

Conclusion du test

		Rejet H ₀	Non rejet H ₀
D (197	H ₀ vraie	α	1 - α
Réalité	H ₁ vraie	1 - β	β

1 – β : puissance = capacité du test à mettre en évidence une différence qui existe vraiment

= probabilité de rejeter H₀ si H₁ est vraie

Risque alpha

- Traduit le risque que l'on prend de rejeter l'hypothèse de départ (Ho = hypothèse nulle) à tort
- Hypothèse nulle Ho : il n'y a pas de différence significative entre les 2 variables, proportions...
- Seuils habituels de 0,05 ou de 0,01

Risque alpha

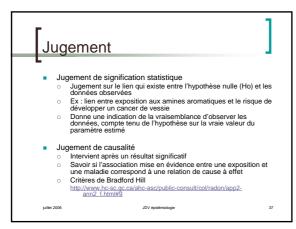
- p < 0,05
- Statistiquement significatif
- Hypothèse nulle rejetée
- Valeur observée non compatible avec la valeur sous Ho
- Les fluctuations d'échantillonnage sont une explication peu probable des discordances entre Ho et les données
- p > 0,05
- Statistiquement non significatif
- Ho n'est pas rejetée La valeur observée est compatible avec la valeur sous Ho
- Les fluctuations d'échantillonnage sont une explication possible des discordances entre Ho et les données ou on manque de puissance pour mettre en évidence une différence

Intervalle de confiance

- Étude :
 - à partir d'un échantillon représentatif de la population
 - permet d'estimer une valeur du paramètre P de la population : valeur observée p_0 = estimation ponctuelle
- Or fluctuations d'échantillonnage : on préfère réaliser une estimation par intervalle = intervalle de confiance IC

juillet 2006

JDV épidémiologie


Intervalle de confiance d'un RR ou d'un OR

- En général à 95% ou 99% (IC $_{95\%}$ = ...) IC $_{95\%}$ = 1,3-1,7 il y a 95% de chance que la valeur soit dans l'intervalle 1,3-1,7
- - Interprétation
 Si IC comprend 1; alors le résultat n'est pas significatif
- Si IC ne comprend pas 1, alors le résultat est significatif Ex : RR = 1,5 (IC $_{95\%}$ = 1,3-1,7)

 Au risque α = 0,05 ; le résultat est significatif
- il y a 1,5 plus de risque statistique de développer la maladie en ayant été exposé
- ne préjuge pas d'un lien de causalité
- Ex: RR = 1,05 (IC_{95%} = 0,98-1,12)

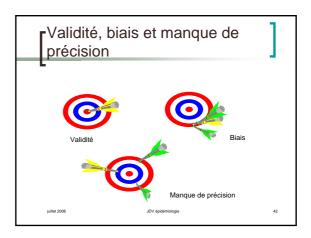
 IC_{95%} comprend 1, le résultat du test n'est pas significatif au risque c = 0,05; on ne peut pas conclure (insuffisance de puissance ?ou pas de différence entre exposé et non exposé?)

juillet 2006

Jugement de causalité Critères internes à l'étude

- Séquence dans le temps o L'exposition à un agent causal doit précéder l'effet
- Force de l'association
 - Plus la force de l'association est grande, moins l'association est susceptible d'être expliquée par des phénomènes de confusion
- Spécificité de la cause et de l'effet
- La relation est spécifique si la cause étudiée est présente chez tous les malades (ou presque) et seulement chez eux, et ce pour cette seule maladie
- Relation de type dose effet entre l'exposition et la fréquence de la maladie
- Cohérence interne à l'étude
 - Renforcée par la prise en compte la plus complète possible des facteurs de confusion et par la minimisation des biais de classement et de sélection

Jugement de causalité Critères externes à l'étude


- = Cohérence avec les connaissances acquises relevées dans la bibliographie
- Constance de l'association et reproductibilité dans diverses situations
- Plausibilité biologique
- Existence d'un mécanisme d'action de l'exposition sur la maladie (idéalement envisagé indépendamment des résultats de l'étude)
- Cohérence avec les connaissances générales et avec les hypothèses qui ont conduit à la réalisation de l'étude
- Parallélisme de la distribution (dans l'espace et dans le temps) du facteur causal et de l'effet

Biais en épidémiologie

L'erreur en épidémiologie

- Toute mesure est sujette à l'erreur
- Deux types d'erreur
 - o L'erreur aléatoire (manque de précision)
 - o L'erreur systématique (biais)
- Planification des études
 - o Précision : absence d'erreur aléatoire
 - o Validité : absence de biais
- Exemple de la cible

juillet 2006 JDV ép

Validité Deux aspects de la validité Validité externe Validité interne Validité interne Validité externe Capacité de généraliser les résultats à une population autre que celle réellement étudiée dans l'enquête Notion d'échantillon représentatif Importance de la taille de l'échantillon Importance de la taille de l'échantillon Aspects scientifiques Importance des connaissances biologiques

Manque de précision

- Définition
 - Divergence, due uniquement au hasard, de la valeur observée sur un échantillon par rapport à la valeur théorique dans la population
- Conduit à un manque de précision dan la mesure d'une association
- Déterminée par la taille de l'échantillon, variabilité du phénomène étudié
- Estimée par l'intervalle de confiance

llet 2006 JDV énidéminlogie

Notion de biais

- Définition d'un biais
 - Distorsion dans l'estimation de la mesure d'une association, entre l'exposition à un facteur de risque et la survenue de la maladie, liée à une erreur systématique
- Étapes de survenue
 - o Sélection des sujets :biais de sélection
 - o Collecte de l'information : biais d'information
 - o Analyse des données : biais de confusion

uillet 2006 JDV épidémiologie 4

Biais de sélection

- Définition
 - Distorsion dans l'estimation de la mesure, liée à des défauts dans la sélection des sujets
 - Induit par une sélection préférentielle des sujets à comparer qui n'est pas indépendante de leur statut
 - Malade/ témoin dans une enquête cas témoins
 - Exposé/ non exposé dans une étude de cohorte
- Synonyme : biais de recrutement

et 2006 JDV épidémiologie 46

Sources des biais de sélection

- Étude de cohorte
 - Non participation liée à l'état de santé et à l'exposition : biais de non réponse
 - Effet du travailleur sain
 - Perdus de vue liée à l'exposition et à la survenue de la maladie (ex : démences)

juillet 2006 JDV éoidémiologie 47

Healthy worker effect

- Biais de sélection inévitable dans les études épidémiologiques professionnelles
 - Travailleurs doivent être en assez bonne santé pour pouvoir réaliser des tâches professionnelles, sinon ils sont déclarés inaptes

uillet 2006 JDV épidémiologie 48

Sources des biais de sélection

- Étude cas témoins
 - o Biais de survie sélective
 - Modification de la survie des cas ou de témoins par l'exposition
 - Biais de détection ou de surveillance ou de diagnostic
 - Effet de l'exposition sur la détection de la maladie (surveillance médicale accrue du fait de l'exposition)
 - Biais d'admission (biais de Berkson) : probabilités différentes d'être hospitalisé chez les exposés et les non exposés

juillet 2006

JDV épidémiologi

Biais d'information

- Définition
 - Distorsion dans l'estimation d'une mesure, liée à des défauts de classification des sujets
 - Peut affecter la classification selon l'exposition ou la maladie
- Synonymes
 - Misclassification
 - o Biais de mesure

t 2006 JDV épidémiolo

Sources des biais d'information

- Outils de mesure imparfait (questionnaire, test diagnostique...)
- Cadre d'observation défectueux (investigateur influencé, sujet influencé...)
- ➡ Sur ou sous estimation de l'association

juillet 2006

JDV épidémiologie

Sources des biais d'information

- Biais dus aux sujets
 - Biais de mémorisation
 - Cas et témoins se souviennent avec une acuité différente de leurs expositions
 - Biais de prévarication (mensonge, omission volontaire)
- Biais liés à l'enquêteur
 - Interroger différemment certains sujets
- Biais liés à la qualité des données (dossiers)

illet 2006

DV épidémiologie

Biais de confusion

- Intervention d'une troisième variable
- Distorsion de la mesure liée à l'intervention de cette variable
 - o Associée à l'exposition
 - Facteur de risque de la maladie indépendamment de l'exposition

juillet 2006

JDV épidémiologie

Facteur de confusion

Exposition

- Tiers facteur associé à la fois
 - Au facteur d'exposition sans en être une conséquence
 - Et à la maladie, indépendamment de l'exposition

Facteur de confusion

juillet 2006

JDV épidémiologie

Maladie

Biais de publication

- Tendance
 - o Des chercheurs à ne faire état que de leurs résultats significatifs
 - o Des reviewers à ne trouver d'interet qu'aux études positives
 - o Des éditeurs à publier les études positives
- Études négatives : non publiées
 - o Littérature scientifique : image incomplête sinon déformée de la réalité

Points de contrôle des biais

- Conception de l'étude : les variables importantes sont prises en compte

 - o Équilibrées dans tous les groupes
- Procédures de sélection

 - Description de la population source Même procédure pour tous les groupes Taille de l'échantillon
 - - Justifiée
 Adaptée à l'hypothèse
 Importance de la puissance de l'étude

JDV épidémic

Points de contrôle des biais

- Conduite de l'étude
 - Sujets retirés de l'étude

 Peu nombreux

 - Peu différents de ceux qui restent Mêmes caractéristiques dans tous les groupes
 - o Dans les études comportant un suivi +++
- Analyse de l'étude
 - Prise en compte des variables importantes
 - Détail des données brutes : vérification des résultats principaux
 - Comparaison multiples

10